
www.manaraa.com

Protocol Failure in the Escrowed Encryption StandardMatt BlazeAT&T Bell Laboratoriesmab@research.att.comAugust 20, 1994AbstractThe Escrowed Encryption Standard (EES) de�nesa US Government family of cryptographic processors,popularly known as \Clipper" chips, intended to pro-tect unclassi�ed government and private-sector com-munications and data. A basic feature of key setup be-tween pairs of EES processors involves the exchange ofa \Law Enforcement Access Field" (LEAF) that con-tains an encrypted copy of the current session key. TheLEAF is intended to facilitate government access tothe cleartext of data encrypted under the system. Sev-eral aspects of the design of the EES, which employs aclassi�ed cipher algorithm and tamper-resistant hard-ware, attempt to make it infeasible to deploy the sys-tem without transmitting the LEAF. We evaluatedthe publicly released aspects of the EES protocols aswell as a prototype version of a PCMCIA-based EESdevice. This paper outlines various techniques thatenable cryptographic communication among EES pro-cessors without transmission of the valid LEAF. Weidentify two classes of techniques. The simplest al-low communication only between pairs of \rogue" par-ties. The second, more complex methods permit rogueapplications to take unilateral action to interoperatewith legal EES users. We conclude with techniquesthat could make the �elded EES architecture morerobust against these failures.1 Introduction and BackgroundIn April 1993, the Clinton Administration an-nounced a proposed new federal standard symmetric-key encryption system for the protection of sensitive-but-unclassi�ed government and civilian data [Mar93].c
 1994. This is a pre-print of a paper to appear at the 2ndACM Conference on Computer and Communications Security,Fairfax, VA, November 1994.

The proposal, called the Escrowed Encryption Stan-dard (EES) [NIST94], includes several unusual fea-tures that have been the subject of considerable de-bate and controversy. The EES cipher algorithm,called \Skipjack", is itself classi�ed, and implemen-tations of the cipher are available to the private sec-tor only within tamper-resistant modules supplied bygovernment-approved vendors. Software implementa-tions of the cipher will not be possible. Although Skip-jack, which was designed by the US National SecurityAgency (NSA), was reviewed by a small panel of civil-ian experts who were granted access to the algorithm,the cipher cannot be subjected to the degree of civilianscrutiny ordinarily given to new encryption systems.By far the most controversial aspect of the EESsystem, however, is key escrow. As part of the crypto-synchronization process, EES devices generate and ex-change a \Law Enforcement Access Field" (LEAF).This �eld contains a copy of the current session keyand is intended to enable a government eavesdropperto recover the cleartext. The LEAF copy of the ses-sion key is encrypted with a device-unique key calledthe \unit key", assigned at the time the EES device ismanufactured. Copies of the unit keys for all EES de-vices are to be held in \escrow" jointly by two federalagencies that will be charged with releasing the keysto law enforcement under certain conditions.At present, two EES devices are being produced.The simplest, the Clipper chip (also known as theMYK-78), is essentially a drop-in replacement for aconventional DES [NBS77] chip and relies on key nego-tiation being handled o� the chip. The other EES de-vice, the Capstone chip (MYK-80), adds built-in sup-port for public-key negotiation and digital signatures,with modular arithmetic functions, random numbergeneration, and other such features.The interface to the Skipjack cipher is similar tothat of DES, based on a 64 bit codebook block cipherand supporting FIPS-81 [NBS80] standard modes ofoperation. Keys are 80 bits in length, as opposed toDES's 56 bits.The initial application of EES is in stand-alonevoice encryption telephone units, such as the AT&T



www.manaraa.com

Model 3600 Telephone Security Device. To facilitatecomputer applications such as electronic mail and �leencryption, a version of the Capstone chip will alsobe available packaged in a standard PCMCIA card.EES PCMCIA cards can be installed easily in manycommercially available laptop computers, and SCSI-based PCMCIA card readers can connect EES cardsto most other computers. The government has spec-i�ed a standard application interface library for com-municating with the cards.Clipper and Capstone chips are, at present, avail-able only for use in approved products that complywith LEAF handling requirements. EES PCMCIAcards, on the other hand, are themselves a stand-aloneproduct, and are to be made generally available \o�the shelf" in the United States.The government has stated that the goal of theEES is to make a strong cipher available for legitimateuse without supplying criminals and other adversarieswith a tool that can be used against American in-terests or to hide illegal activities from law enforce-ment. Thus the system is intended to be di�cult todeploy without also sending a valid LEAF and therebyexposing the tra�c to the possibility of governmentmonitoring. In this paper, however, we show that itis possible to construct applications that can enjoyuse of the Skipjack cipher but that do not admit lawenforcement access through the LEAF. For the pur-poses of this paper, we consider two classes of \rogue"EES applications: those that can communicate onlywith other rogue systems and those that can success-fully interoperate with EES \legal" systems as well.The latter category especially threatens the goals ofthe EES program, since such rogue applications wouldbe operationally equivalent to their legal counterpartswithout being subject to government access.1.1 LEAF Structure and ProtocolsThe LEAF is a 128 bit structure containing enoughinformation for law enforcement recovery of the ses-sion key with the cooperation of the two agencies hold-ing the unit key database. The structure contains a32 bit unique unit identi�er (the serial number of thechip that generated the LEAF), the current 80 bit ses-sion key (encrypted with the device's unit key) and a16 bit LEAF checksum. The entire structure is en-crypted with a �xed \family key" to produce the �nalLEAF message. All cryptographic operations employsymmetric (secret) key techniques. The family key isshared by all interoperable EES devices. The familykey, the encryption modes used to encrypt the unitkey and the LEAF message, and the details of thechecksum are all secret. Externally, the LEAF is anopaque 128 bit package. See Figure 1.To decrypt EES tra�c, a law enforcement agency

Unit ID Encrypted Session Key chksum

Session key

80 bits

32 bits 80 bits

128 bits

(unit key)

(global family key)

Skipjack encrypt

Skipjack encrypt

IV & other variables

16 bits

LEAF

16 bit checksum

function

Figure 1: LEAF Structure�rst must intercept the LEAF and the tra�c itselfusing conventional data wiretapping technology. TheLEAF is decrypted with the family key, revealing thechip serial number, the unit key-encrypted session keyand the LEAF checksum. The chip serial number isprovided, with appropriate authorization, to the twoescrow agencies, which each return half of the unit keyfor the given serial number. The two half-unit keys canbe combined (by bitwise exclusive-or) to produce theunit key, which the law enforcement agency can thenuse to decrypt the session key. This session key canthen be used to decrypt the actual tra�c.The wiretapping system thus relies on the availabil-ity of the LEAF along with the encrypted tra�c. Toforce applications to send the LEAF on the same chan-nel as the tra�c, EES devices will not decrypt datauntil they have received a valid LEAF for the currentsession key. Presumably, EES devices perform variousintegrity checks on received LEAFs prior to acceptingthem.To provide a convenient application interface forLEAF management, EES devices generate and loadLEAFs along with the FIPS-81 initialization vectors(IVs). The devices provide \generate IV" and \loadIV" functions that operate on 192 bit �elds containingan unencrypted 64 bit IV concatenated with the 128bit encrypted LEAF. The load IV operation fails if theassociated LEAF does not pass an integrity check.



www.manaraa.com

1.2 Experimental ObservationsMost details of the LEAF creation method, encryp-tion modes, and data structures, beyond those men-tioned above, are classi�ed and are therefore unknownto us. In particular, the EES standard does not specifythe exact mechanism that enforces the transmission ofthe correct LEAF. However, we were able to performa number of simple experiments on our prototype de-vices to con�rm and expand our knowledge of LEAFinternals. All experiments were performed at the pro-tocol level through the standard interface and did notinvolve cryptanalysis or direct hardware \reverse en-gineering." We summarize our observations below.� LEAF integrity is veri�ed entirely via redundancyin the checksum �eld. In general, attempts toload an incorrect LEAF fail. This must be dueentirely to the checksum �eld and not through di-rect veri�cation of the unit ID or encrypted ses-sion key; the receiving chip cannot con�rm thecorrectness of the unit ID or encrypted sessionkey �elds since it does not know the unit ID orunit key of the sender. Therefore, the LEAF mustbe testable by the receiver based only on knowninformation (such as the cleartext session key andIV) included in the checksum computation.� LEAF checksum computation includes (implicitlyor explicitly) the current IV. The LEAF changeswhenever a new IV is generated for a given sessionkey. Since the IV is not included directly as one ofthe LEAF �elds, it must in
uence the checksum.Furthermore, the receiving device refuses to loadthe wrong IV for a given LEAF.� LEAF checksum computation includes the clear-text of the current session key. Attempts to loada LEAF (and corresponding IV) from a previoussession key fail. It is therefore not possible to \re-use" a LEAF generated from an old session key,even though the LEAF itself appears internallyconsistent.� LEAF checksum computation includes otherparts of the LEAF. Attempts to load LEAFs witha single bit inverted anywhere in the 128 bit struc-ture fail.� LEAF encryption di�uses its input throughoutthe entire 128 bit structure. The LEAF structureor encryption mode is not exactly as speci�ed inreleased documents. Generating a new IV for agiven session key causes changes across the entireLEAF. Recall that the EES codebook size is 64bits, and so encryption of the LEAF involves atleast two block encryptions. Since the IV a�ects

only the checksum, and the checksum appears atthe end of the LEAF in public documents, we canconclude that at least one of the following is true:{ The LEAF is encrypted with a non-standardmode in which cleartext in \late" blocks af-fects the early ciphertext.{ The LEAF is encrypted with a standardforward-chaining or stream mode but thechecksum appears in the �rst cipherblock ofthe LEAF.{ The LEAF is encrypted with a standardforward-chaining or stream mode but thecurrent session IV is itself used to initializeit.� The LEAF checksum is, in fact, 16 bits. A brute-force search of the LEAF space for a valid LEAFrequires about 216 operations. See the discussionof interoperable rogue applications below.2 Non-interoperable Rogue Applica-tionsFirst, we consider the problem of constructing aset of applications that use Skipjack to communicateamong themselves without key escrow. We are free touse any method permitted by the EES processor in-terface without regard for standard usage. Since suchapplications may be restricted to communicating withother rogue systems, their general utility is somewhatlimited, although they still violate the intent of theEES.Several approaches can easily circumvent the lawenforcement access mechanism, with a range of prac-ticality and tradeo�s.2.1 LEAF ObscuringThe simplest approach is to take steps to ensurethat the eavesdropper cannot recover the LEAF orthe encrypted tra�c. One option is pre- or post- en-cryption of the tra�c with another cipher. It is notclear, however, what the attacker gains from doingthis, since if the second cipher is believed strong thereis no need to use Skipjack in the �rst place, and if it isbelieved weak it does not protect the tra�c from thegovernment anyway.A re�nement on this approach encrypts only theLEAF. A LEAF encryption scheme could be inte-grated into a key exchange protocol that produces\extra" shared secret bits (such as Di�e-Hellman[DH76]). Since only 80 bits are required for the Skip-jack session key, 128 of the other bits could be used



www.manaraa.com

as a Vernam cipher against the LEAF. Note thatthis scheme is not directly implementable with theEES PCMCIA card key exchange protocol, which doesnot permit external access to the negotiated key bits.However, an additional key exchange could be per-formed in software on the host processors.Another option is to negotiate keys (and LEAFs)out-of-band or in advance. While it is not clear thatthere is any way EES could prevent such an attack,neither is such a scheme very useful in practical ap-plications. Users would never be able to communi-cate securely without pre-negotiation or the use of atrusted channel. If a trusted channel existed, it couldbe just as easily used for the tra�c itself. For some ap-plications, however, such as bulk �le encryption, pre-negotiated keys may be practical.2.2 LEAF FeedbackAnother possible approach is to avoid sending theLEAF altogether. Depending on the cryptographicmode this can be surprisingly simple. Recall thatLEAFs are generated and loaded along with the IV.While applications cannot easily force the chip to usean externally-chosen IV, they can easily generate anew one. Upon negotiation of a session key, the re-ceiving side of a rogue application can simply generatea new IV/LEAF and feed it back to itself, the sendernever having sent the IV/LEAF at all. This still leavesthe problem of IV synchronization. Because IVs can-not be loaded without a LEAF and LEAF checksumsappear to be bound to the IV, sender and receiver haveno way to communicate a directly loadable IV withoutalso communicating the corresponding LEAF. Mostcryptographic modes require the sender and receiverto synchronize on the IV. This is not an insurmount-able problem, however. It is possible to compose e�-cient implementations of each FIPS-81 cryptographicmode in terms of other modes without explicitly load-ing the sender's IV at the decrypting side. Let us con-sider \LEAF feedback" schemes for each commonlyused cipher mode.2.2.1 Electronic Code Book (ECB)In ECB mode, there is no IV (or, more properly, the IVdoes not a�ect the cipher in any way). The primitiveblock cipher is used directly, without chaining or feed-back from other blocks. LEAF feedback is thereforesimple { each side generates an IV/LEAF immediatelyafter the key is negotiated and loaded, and uses ECBmode for communication. The fact that sender andreceiver generated di�erent IVs does not matter.ECB mode is itself vulnerable to a number of well-known attacks and is not considered suitable for gen-eral use.

2.2.2 Cipher Block Chaining (CBC)In CBC mode encryption, the cleartext of each blockis �rst exclusive-ORd (XOR) with the ciphertext ofthe previous block and then encrypted with the blockcipher function. The �rst block is XORd againstthe IV. Decryption reverses the process, applying theXOR function after the ciphertext has been decryptedwith the block cipher function. CBC mode is \self-synchronizing" in that decryption can recover frommissing or damaged ciphertext blocks. Since success-ful decryption of a block depends only on receivingthe previous block's ciphertext, loss of the IV only af-fects the �rst block. LEAF feedback with a new IV,therefore, corrupts the �rst block but this can be eas-ily compensated for by pre�xing one \dummy" blockto the message, to be discarded by the receiver.2.2.3 Cipher Feed Back (CFB)CFB mode uses the result of successive encryptionthrough a shift register (initialized with the IV) asa keystream generator. The block encrypt fuction isused to generate the stream, which is XOR mixed withthe datastream for both encryption and decryption.The shift register input is \fed" with the ciphertextstream from previous blocks. The stream depends en-tirely on the key and the previous blocks of ciphertext.CFB can be implemented based on ECB mode withan external shift register and IV. This requires onecall to the EES device for each cipherblock. Exper-iments with this method with a prototype EES cardsuggest that this method carries a signi�cant band-width penalty, however, since each ECB call to thecard takes about 38ms and a separate call is requiredfor each 8-64 bit block of the stream.A more e�cient implementation takes advantageof CFB's limited error propagation. CFB mode, likeCBC mode, is self-synchronizing, with complete re-covery from missing or damaged ciphertext once theshift register has exhausted. CFB can therefore re-cover from an incorrect IV. The sender can pre�x a\dummy"block to the ciphertext input stream and thereceiver can feed back a freshly generated, random IVand employ a bulk CFB block decrypt directly (justas with CBC mode).2.2.4 Output Feed Back (OFB)OFB mode also uses the result of successive encryp-tion through a shift register (initialized with the IV)as a keystream generator. The block encryption func-tion is used to generate both the encrypt and decryptstreams. Subsequent stream values are not a�ected bythe data. Note that the entire stream depends on thekey and IV and therefore requires that both senderand receiver be able to load the same IV to generate



www.manaraa.com

the same streams. LEAF feedback cannot thereforeuse OFB mode directly, since the stream will neverrecover from an incorrect IV. However, OFB modecan be simulated using the ECB block encrypt func-tion and an externally implemented shift register andstream XOR mixer. The IV must still be sent to thereceiver (without the LEAF, of course) to initializethe external shift register. This method carries a highperformance penalty, just as with the manual imple-mentation of CFB mode described above.A more e�cient method exists to generate an OFBstream, however, using Cipher Feed Back (CFB) modeto simulate the stream generator for large blocks. Thesender generates an IV/LEAF and encrypts with OFBmode directly in the standard manner and sends onlythe IV to the receiver. Two passes are required on thereceive side. First, the receiver generates a new IVand LEAF and encrypts a single block of all zeros withCFB mode. Now the receiver can recreate the sender'sOFB keystream mask for n blocks by CFB encryptingn blocks of zeros pre�xed with the block created inthe previous step XORd with the real IV. The sub-sequent blocks, after CFB encryption, can be XORdwith the ciphertext (shifted by one block) to recoverthe cleartext. Note that while the XOR mixing mustbe performed separately on the host processor, onlytwo calls to the EES device are required to decrypt anarbitrary length ciphertext (up to the maximumblockdecrypt size supported by the devices).3 Interoperable Rogue ApplicationsA more interesting (and useful) class of rogue appli-cations includes those that can interoperate with \le-gal" peers (those that make no e�ort to circumvent theescrow system), still without allowing law enforcementaccess. Such applications have much greater utility(and are a much greater threat to the escrow system)than non-interoperable rogues, because they have allthe bene�ts of interoperability with other EES deviceswithout the risk of exposure to wiretapping.In the previous section, we discussed techniques forrogue applications to communicate with one anotherwithout sending the LEAF. Such applications couldbe modi�ed to adapt their behavior to send the LEAFonly when communicating with a legal peer. A sim-ple way to construct such an application is to \testthe water" by sending the peer device a bogus LEAFand then, if the exchange fails (because the peer is op-erating legally), sending a valid LEAF. Such a \twophase" protocol is not completely satisfactory, how-ever, because it still renders tra�c vulnerable to LEAFmonitoring when communicating with legal applica-tions. Furthermore, such a protocol cannot work with

non-interactive applications such as electronic mail,�le encryption, fax, etc.A more general approach is to construct a LEAF�eld that will be accepted as valid by the receiver butthat does not actually contain the encrypted sessionkey.3.1 Brute-Force LEAF SearchRecall that the LEAF structure contains three com-ponents: the unit serial number of the transmitter, theunit key-encrypted session key, and a 16 bit checksum,all encrypted as a block under the family key. Becausethe receiving chip knows only the session key, the IV,and the family key, but not the other chip's unit keyor serial number, LEAF veri�cation must be entirelyon the basis of the 16 bit checksum. The checksum,which is presumably based only on the session key, IVand other LEAF data, cannot be extracted from orinserted into a LEAF without knowledge of the fam-ily key (and the encryption mode). It is therefore notpossible for a rogue application to extract the check-sum from a valid LEAF and re-insert into an invalidLEAF, or to damage only the encrypted session keyin an otherwise-valid LEAF.A rogue sender could simply use a di�erent sessionkey when generating the LEAF; this LEAF would ap-pear internally consistent with a valid checksum butwould contain the wrong session key. \Old" LEAFsare detected and rejected by the receiving chip, how-ever, apparently by using the cleartext of the sessionkey (rather than the unit-key encrypted session key)in the computation of the LEAF checksum.Since the checksum is only 16 bits in length, how-ever, another attack is possible.1 For any session keyand IV, 2112 of the 2128 possible LEAF structures willappear to have a valid checksum. Because the pro-cess of decrypting a randomly generated LEAF withthe family key will tend to randomize the decryptedbits in the checksum �eld, any randomly generated128 bit string will have a 1=216 chance of appearingvalid for the current session key and IV. Note thatthe sending chip, like the receiving chip, has a built-in LEAF-testing facility. Once a session key has beennegotiated, an attacker can use the local EES deviceto �nd a valid-looking-but-invalid LEAF with an ex-pected average of 216 trials. This attack appears to befeasible in practice.Such a randomly generated LEAF structure will beaccepted as valid by the receiving chip and will enableEES communication. The tra�c will not be subjectto LEAF-based wiretap access, however. When the1The �rst observation that LEAF checksumsmay be vulner-able to brute-force spoo�ng appears have been independentlymade by Ken Shirri� in a posting to the \sci.crypt" Usenetgroup on January 27, 1994.



www.manaraa.com

wiretapper decrypts the rogue LEAF with the familykey, the checksum �eld will appear valid but the unitidenti�er and encrypted session key �elds will containonly random bit strings.3.2 Experimental ResultsWe measured the time to test randomly selectedLEAFs on an EES PCMCIA card. All experimentswere conducted with a Mykotronx prototype EES cardconnected through a Spyrus SCSI PCMCIA reader toa Sun Sparc-10 host running SunOS 4.1.3. We madeno e�ort to optimize the communication with the cardor library, using the standard prototype PCMCIA li-brary and device drivers as delivered. Recall thatthe EES PCMCIA interface is fairly loosely-coupledto the host processor and supports a more restrictedset of cryptographic operations than the basic Clip-per/Capstone chips themselves. Therefore, LEAF-testing operations on the PCMCIA card are inherentlyslower than the same operations on a more tightly-coupled EES device or on a special-purpose host witha built-in EES processor. It is also possible that com-munication with the card can be made faster withthe more tightly-coupled PCMCIA interfaces foundon most laptop computers. The communication timewith the card interface dominates the cost of mostoperations in the environment we examined; host pro-cessor speed was not a signi�cant determining factor.We assume our results to be approximately represen-tative of typical implementations in a worst-case en-vironment.Our test application required about 38ms to gen-erate (with a pseudorandom generator) a LEAF-sizebit string, send it through the PCMCIA library to theEES card and check the result. Since, on average, 216random LEAFs must be generated and tested beforeone with a valid checksum is found, a rogue PCM-CIA application can search for a valid-looking LEAFin 38 � 216 ms, or 2,490,368 ms, which is about 42minutes.42 minutes obviously adds too much latency tochannel setup time to be useful in real-time applica-tions such as secure telephone calls. For less interac-tive applications, particularly secure electronic mail,fax and �le storage systems, such a delay may be ac-ceptable. Furthermore, the attack has almost linearspeedup with parallel processing. With 60 PCMCIAcards, a valid-looking LEAF could be expected in un-der 45 seconds. Also, it may be reasonable to expectseveral orders of magnitude reduction in search timewith more direct use of a Capstone or Clipper chip.Since those devices are not expected to be made avail-able for unrestricted use outside embedded products(as the PCMCIA cards are), however, it is likely thatpractical implementations of this attack will be limited

to applications that use the PCMCIA interface.We implemented this attack for a simple encrypted�le storage application that we built as a testbed.Other than the 30-50 minutes of latency added bythe LEAF search at encryption time (which is per-formed \o�ine" from the user interface), the rogueversion is functionally identical to the version that fol-lows the approved interface. In a storage applicationthe LEAF-search delay is almost completely transpar-ent, since most user operation can proceed normallyprior to its completion. In store-and-forward messag-ing applications, such as electronic mail, however, theLEAF search delays message delivery. Whether thisis acceptable depends on the application; additionalcomputing resources, in the form of EES PCMCIAcards (perhaps borrowed from nearby idle worksta-tions) can reduce the delay. It may also be possiblefor messaging applications to precompute session keysand bogus LEAFs prior to their use, especially if thenumber of possible recipients is small. We did notimplement any of these conveniences, however.In interactive applications such as secure telephony,the search time required for LEAF forgery during callsetup may render the technique impractical. Otherthan parallel processing with additional EES devices,there do not appear to be viable shortcuts for reducingthis search time. If call setup uses a negotiated keyexchange, the originator cannot generally predict thesession key and therefore cannot conduct the LEAFsearch in advance. Neither do there appear to beshortcuts to testing an average of 216 LEAF values.The formulation of the problem, in which the attackerneed only discover some session key and correspondingLEAF, seems at �rst blush to admit a so-called \birth-day attack" requiring only p216 = 28 trials. However,because the LEAF checksum is cryptographically pro-tected by the family key, there appears to be no obvi-ous way to perform the constant-time lookup on thechecksum required for each probe in such an attack.Because no widely-deployed \o�cial" EES PCM-CIA applications existed at the time of this writing,there were no third-party supplied systems availableagainst which we could exploit LEAF forgery tech-niques. We have every reason to believe, however,that building interoperable rogue versions of any non-interactive PCMCIA application that implements anopen protocol would be a straightforward matter.4 DiscussionThe EES failure modes described in this paper donot have the same semantic implications as protocolfailures in the classic sense. None of the methods givenhere permit an attacker to discover the contents of en-crypted tra�c or compromise the integrity of signed



www.manaraa.com

messages. Nothing here a�ects the strength of the sys-tem from the point of view of the communicating par-ties; indeed, in some sense these techniques increasethe security of EES-based protocols by eliminating theLEAF as a source of attack.Instead, these methods attack an unusual aspectof EES requirements { the attempt to enforce accessfor a third party who is not an active participant inany part of EES-based communication. Once the sys-tem has been deployed, there is little further that thethird party (the wiretapper) can do to protect its in-terests. In e�ect, the wiretapper actively participatesin the protocol only by providing the narrow interfaceto the tamper-resistant EES module that requires thata LEAF be loaded prior to executing a decrypt opera-tion. Our attacks thwart the wiretapper by using thatinterface in unexpected ways.In considering countermeasures to these attacks, itis useful to divide the properties of the EES systeminto three somewhat overlapping categories:� Fundamental. This category includes the prop-erties of any key escrow system in a particularapplication domain (e.g., widely available compo-nents, FIPS-81 compatibility, identi�able LEAFs,etc.). These properties cannot be changed with-out a�ecting the applicability of the system.� Architectural. The basic properties of the systemdecided upon early in the design process (e.g., thesize of the LEAF �eld, the crypto-synchronizationprotocol, etc.). Changing the architecture re-quires re-engineering of a signi�cant fraction ofsystem components.� Implementation. The characteristics of the ac-tual EES devices and software. These can bechanged by replacing or modifying the compo-nents in question.In this paper we have focused primarily on weak-nesses that are either fundamental or that arise fromthe EES architecture. In particular, we did not at-tempt to discover or exploit \bugs" in the prototypeEES devices.It is not clear that it is possible to construct anEES system that is both completely invulnerable to allkinds of exploitation as well as generally useful. Letus consider modi�cations to the EES interface thatfrustrate the various attacks.Non-interoperable applications are particularlyhard to prevent, since they are free to use the EES in-terface in any way they choose. LEAF feedback tech-niques can be discouraged by having devices recognize(and refuse to accept) locally-generated LEAFs. Thiswould make the EES system di�cult to deploy in legit-imate secure storage applications, however, and such

restrictions could be circumvented easily by using twodevices on the receiving side, one for LEAF generationand one for decryption.The interoperable LEAF-search method can bemade less attractive by increasing the time requiredto check a LEAF. The ability to do this is limited bythe fact that any reduction in LEAF-checking perfor-mance also degrades the performance of legal applica-tions. EES PCMCIA cards, on which LEAFs can befeasibly searched for, already require approximately38 ms to load an IV and LEAF. Slowing this to, say,two seconds, would noticeably increase the setup timefor legitimate interactive tra�c but only adds a factorof 50 to the time required by the o�ine rogue LEAFsearcher (who could compensate with as much parallelprocessing as desired).Alternatively, EES devices could limit the numberof incorrect LEAFs they will accept (perhaps self-destructing after some threshold has been reached),or could impose a longer delay before returning theresult of an attempt to load an invalid LEAF. Theseapproaches are di�cult to engineer reliably, however,and greatly increase the vulnerability of the systemto denial-of-service attacks by an adversary who caninject noise into a receiver's datastream.A more robust solution increases the size of theLEAF checksum to 32 or 64 bits, making exhaustivesearch infeasible. Since there is no \extra room" in theexisting 128 bit LEAF package, any increase in check-sum size would necessitate either increasing the LEAFsize or reducing the size of the other LEAF �elds. In-creasing the size of the LEAF package to, say, 192bits would provide room for an additional 64 bits ofchecksum redundancy but would would likely requiresigni�cant re-engineering of many existing EES com-ponents, from the processors themselves to the pro-tocols and applications that use them. Within theconstraints of the 128 bit package, checksum size canincrease only at the expense of either the unit ID orencrypted session key �elds. The 32 bit unit ID �eldappears to be at the minimum possible size given theintended scope of the EES program (a previous ver-sion of the LEAF with a 25 bit unit ID was consideredinadequate [NIST94a]). It may be possible to use bitsfrom the encrypted session key �eld to increase thechecksum size, at some expense in law enforcementwiretap access performance. If only 64 bits of the en-crypted session key were included in the LEAF, thewiretapper could exhaustively search for the remain-ing 16 bits at decrypt time. Such a search, with prop-erly optimized hardware, would likely add at most afew seconds to the decrypt time and would enable 32bit LEAF checksums within the existing LEAF sizeconstraints.Finally, a more drastic approach, which thwarts



www.manaraa.com

non- interoperable as well as interoperable rogues, is tosharply restrict the availability of EES devices to thoseusers and applications that are trusted not to abusethem. PCMCIA cards, being inherently portable,would need to be handled with particular care to avoidtheir use by unauthorized individuals. Of course, it isnot at all clear that such restrictions could be madee�ective or consistent with the goals of the EES pro-gram, which aims to make the system widely availableto the public.5 ConclusionsThe EES attempts to balance the seemingly con-
icting goals of making widely available a strong cryp-tographic system while also ensuring government ac-cess to encrypted tra�c. Rogue applications defeatEES by making use of the cipher without the govern-ment \back door." Whether rogues threaten the vi-ability of the EES program depends on whether theycan be easily deployed for a signi�cant fraction of thetra�c in their target application areas.We have identi�ed two classes of rogues. The mostgeneral, those that can take unilateral action to inter-operate with legal EES systems, are potentially themost damaging to the EES program. These applica-tions are functionally similar to their non-rogue coun-terparts and have all the advantages of general inter-operability without the risk of wiretapping. The tech-niques used to implement them do carry enough ofa performance penalty, however, to limit their useful-ness in real-time voice telephony, which is perhaps thegovernment's richest source of wiretap-based intelli-gence. The second class, those that can interoperateonly with other rogue devices explicitly designed tothwart the LEAF, are also the easiest to implementand the hardest to prevent. Devices in this class arenot as great a threat to the EES program as those inthe former class because they do not conform to o�-cial interoperability standards. However, if the pop-ulation of legal devices is substantially smaller thanthat of rogue devices in a particular market, lack oflegal interoperability may not be a signi�cant disad-vantage.It is worth noting that, with EES PCMCIA cards,a rogue system can be constructed with little morethan a software modi�cation to a legal system. Fur-thermore, while some expertise may be required toconstruct a rogue version of an existing system, it islikely that little or no special skill would be requiredto install and operate the modi�ed software. In par-ticular, one can imagine \patches" to defeat key es-crow in EES-based systems being distributed over net-works such as the Internet in much the same way thatother software is distributed today. Experience with

\pirate" cable TV descramblers, cellular telephoneaccess codes, and copy-protected PC software sug-gests that rogue modi�cations to circumvent controlson widely-deployed systems tend to emerge quicklyeven when moderate safeguards against such modi-�cations are present. EES PCMCIA-based systemsappear to be particularly vulnerable to such abuse be-cause the interface to the system is controlled com-pletely in software on the user's host computer. Thebarriers to constructing a rogue software system aremuch smaller than those to modifying and deployinghardware-based rogue products, and the developmentand proliferation of software modi�cations is very dif-�cult to regulate in the presence of open standardsand communications networks.6 AcknowledgmentsSteve Bellovin, Whit�eld Di�e, Joan Feigenbaum,Peter Honeyman, Steve Kent, Jack Lacy, Tom Lon-don, Dave Maher, Andrew Odlyzko, Rob Pike, JimReeds, Mike Reiter and Bruce Schneier o�ered innu-merable comments that have greatly improved this pa-per. The suggestion to use bits from the encryptedsession key to augment the checksum size arose fromdiscussions with Steve Bellovin. We would like to es-pecially acknowledge the generous assistance of vari-ous individuals at NSA in providing us with prototypeEES PCMCIA cards and technical data. We are par-ticularly grateful for the spirit of openess and colle-giality displayed by the members of NSA in reviewingthese results.The author remains, of course, solely responsiblefor any errors in this paper.The name \Tessera" is a trademark of Tessera, Inc.,which neither produced nor licensed the government-supplied EES PCMCIA cards to which we refer in thispaper. We know of no connection between Tessera,Inc. and the EES program. Previous references toEES PCMCIA cards as \Tessera cards" appear to havebeen made in error.7 PostscriptSome of the results in this paper are based on ex-periments conducted with pre-release prototype EESPCMCIA cards and software obtained from NSA. Theproduction version of the EES PCMCIA system willlikely exhibit di�erent performance characteristics andhave a di�erent interface from the version we exam-ined. The reader is cautioned to view any experimen-tal results presented here as a \proof of concept" andnot as representative of the exact performance of the



www.manaraa.com

�nal system. We understand that NSA intends to in-corporate features to discourage these attacks into fu-ture versions of EES devices.References[DH76] W. Di�e and M. E. Hellman. New di-rections in cryptography. IEEE Trans. onInformation Theory, November 1976.[Mar93] J. Marko�. Communications plan to bal-ance government access with privacy. NewYork Times, April 16, 1993.[NBS77] National Bureau of Standards. DataEncryption Standard, Federal InformationProcessing Standards Publication 46, Gov-ernment Printing O�ce, Washington, D.C., 1977.[NBS80] National Bureau of Standards. Data En-cryption Standard Modes of Operation,Federal Information Processing StandardsPublication 81, Government Printing Of-�ce, Washington, D.C., 1980.[NIST94] National Institute for Standards and Tech-nology. Escrowed Encryption Standard,Federal Information Processing StandardsPublication 185, U.S. Dept. of Commerce,1994.[NIST94a] National Institute for Standards and Tech-nology. Technical Fact Sheet on Blaze Re-port and Key Escrow Encryption. June 15,1994.


